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Dynamic responses of a simply supported beam with a translational spring carrying a moving
mass are studied. Governing equations of motion including all the inertia effects of a moving
mass are derived by employing the Galerkin’s mode summation method, and solved by using the
Runge-Kutta integral method. Numerical solutions for dynamic responses of a beam are ob-
tained for various cases by changing parameters of the spring stiffness, the spring position, the
mass ratio and the velocity ratio of a moving mass. Some experiments are conducted to verify
the numerical results obtained. Experimental results for the dynamic responses of the test beam
have a good agreement with numerical ones.
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1. Introduction

The dynamic behaviors of a beam structure car-
rying moving loads have long been an interesting
subject for many researchers. The importance of
this subject can easily be recognized in the field
of transportation. Guide-ways, bridges, overhead
cranes, cable-ways, rails, tunnels and pipelines are
the typical examples of the structure to be de-
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signed to support moving masses.

The moving mass problems were initially stu-
died without considering the effect of the load in-
ertia, so—called a moving force approximation, by
many researchers (Timoshenko, 1922 ; Ayre et al.,
1950 ; Fryba, 1972). Ting and his co-researchers
(Ting et al., 1974) employed the static Green’s
function to solve the dynamic responses of beams
under a moving mass. Sadiku and Leipholz (1987)
studied the dynamics of elastic systems with mov-
ing concentrated masses.

Esmailzadeh and Ghorash (1992) investigated
the dynamic behavior of a beam taking into ac-
count the inertia effect of moving mass. Michaltsos
et al.(1996) presented a closed form solution for
the dynamic response of a simply supported uni-
form beam under a moving load of constant mag-
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nitude and velocity by including the effect of its
mass. Lee (1996) formulated the equation of mo-
tion for a Timoshenko beam acted upon by a con-
centrated mass moving with a constant speed. He
also pointed out the importance of the contact
force between the mass and the beam during the
motion.

In parallel with the above studies, the dynam-
ic response of a beam on an elastic foundation
subjected to moving loads has also been studied.
Thambiratram and Zhuge (1996) applied the finite
element method to conduct the dynamic analysis
of beams on an elastic foundation under moving
loads. They presented the effect of the speed of
the moving load, the foundation stiffness and the
length of the beam on the response of the beam.
Lin (1997) performed the vibration analysis of
beams traversed by uniform partially distributed
moving masses. Foda and Abduljabbar (1998) used
the dynamic Green function to investigate the re-
sponse of a beam structure to a moving mass.

Recently, Michaltsos (2002) derived the equa-
tion of motion of a simply supported beam under
a moving mass including various inertia effects of
the moving mass, and presented the closed form
solution.

In this paper, the effect of a moving mass on the
dynamic response of a simply supported beam with
a spring support was investigated. All the effects
of a moving mass such as centrifugal, Coliolis,
gravitational, and inertia and the initial deflec-
tion of a beam are taken into account in the deri-
vation of the equations of motion. The Runge-
Kutta integration technique was used to investi-
gate the dynamic response of a beam. Many dif-
ferent cases are investigated by varying parameter
values of the velocity and the magnitude of a mov-
ing mass, the stiffness and the position of a spring
support. Finally, some experiments are conducted
to verify the numerical solutions.

2. Mathematical Model
and Formulation

A simply supported beam with a spring support
is depicted in Figure 1. The beam is of length L,
mass per unit length L, and flexural rigidity E1.
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Fig. 1 A mathematical model of an elastically re-
strained beam subjected to a moving mass

A moving mass of mass with a constant velocity
v is travelling on the beam. A translational spring
of spring stiffness /% is located at the position XG.

The equation of motion for the model shown in
Figure | can be written as
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where, g is the gravity, 0 (x—wvt) is the Dirac
delta function, and a is the acceleration of the mov-
v(x, 1), is
assumed to be the sum of the solution for static

ing mass. The solution of the Eq. (1),

deflection ys(x) and that for dynamic deflection

valx, ).
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Introducing the dimensionless parameter £=x//,
Eq. (1) can be rewritten as
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where, v=v/[, a=a/l.

Employing the Galerkin’s mode summation
method, dimensionless solutions for Eq. (3) are
assumed to have the following form
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Fig. 2 A new coordinate system for a beam with a
spring support
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where, the shape function ¢;(&) is determined
by the shapes and the boundary conditions of a
beam. For the model of having a spring support
located at the position of x5, a new coordinate
system shown in Fig. 2 is introduced to express
the shape function ¢;(&).

Egs. (7) and (8) are shape functions that satis-
fy both the boundary conditions and the shapes of
the beam.
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where, the eigen-value 3; has the following rela-
tionship with the 7-th circular natural frequency
of the beam.
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Substituting Eq. (6) into Eq. (3), eliminating dif-
ferential terms with respect to time, and perform-
ing inner product ¢,,x(&x) yield
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From Eq. (13), the equation of motion can be
written in matrix form as
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where, & is the dimensionless spring position,
p=DM/ml is the ratio of the moving mass to the
mass of the beam.
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3. Numerical Results

In order to study the dynamic response of a sim-
ply-supported beam with a spring support, the
state variable ¢(#) of Eq. (14) was determined by
using Runge-Kutta integration method. For the
numerical analyses, dynamic responses were in-
vestigated by varying parameters of the mass ratio
4, the dimensionless velocity ratio vo=1v/vcr, the
dimensionless spring position &, and the dimen-
sionless spring stiffness K.

Figures 3~5 show the dynamic responses of
the beam when the dimensionless spring stiffness
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Fig. 3 Dynamic deflections at the position of the
moving mass (2,=0.1, £=0.1, £=0.2)
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Fig. 4 Dynamic deflections at the position of the
moving mass (2p=0.1, £=0.1, £=0.5)
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K and the dimensionless spring position &s vary
for vo=p=0.1.

From these figures, it is found that the maxi-
mum dynamic response of the beam increases as
the dimensionless spring stiffness K decreases. In
Fig. 3 and 4 when £,=0.2 and £;=0.5 respec-
tively, the location of the maximum dynamic de-
flection shifts to the right side of the beam as the
dimensionless spring stiffness K increases.

For £=0.8 of Fig. 5, however, the location of
the maximum deflection shifts slightly to the left
side of the beam as K increases.

Figures 6~8 show the dynamic responses of
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Fig. 5 Dynamic deflections at the position of the
moving mass (2p=0.1, £=0.1, £&=0.8)
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Fig. 6 Dynamic deflections at the position of the
moving mass (,=0.1, £=1.0, £&=0.2)
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Fig. 7 Dynamic deflections at the position of the
moving mass (2p=0.1, £=1.0, £=0.5)
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Fig. 8 Dynamic deflections at the position of the
moving mass (2p=0.1, £=1.0, £=0.8)

the beam for vp=0.1 and £=1.0. In these cases, a
similar phenomenon was observed as presented
for Figs. 3~5.

The location of the maximum dynamic deflec-
tion shifts to the right side of the beam for &=
0.2 and &s=0.5 while it shifts to the left for &=
0.8 as the dimensionless spring stiffness K in-
creases. Also it is found that the dynamic re-
sponse of the beam increases as the dimensionless
spring stiffness K decreases.

Figures 9 and 10 show the dynamic deflections
of the beam for £=0.1 and »=0.5. As can be seen
in these figures, the maximum dynamic deflection
depending on the spring stiffness does not neces-

Dynamic deflections (mm)
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Fig. 9 Dynamic deflections at the position of the
moving mass (2,=0.5, £=0.1, £&=0.2)
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Fig. 10 Dynamic deflections at the position of the
moving mass (2,=0.5, £=0.1, £&=0.5)
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Fig. 11 Dynamic deflections at the position of the

moving mass (2,=0.5, £=1.0, £=0.2)
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Fig. 12 Dynamic deflections at the position of the
moving mass (2,=0.5, £=1.0, £&=0.5)

sarily occur with a lower value of spring stiffness.

The dynamic deflections of the beam for p=
1.0 and 2,=0.5 are shown in Figs. 11 and 12. A
similar phenomenon was observed as mentioned
for Figs. 9 and 10. Unlikely for a low velocity
(v0=0.1) of the moving mass case, a larger def-
lection does not necessarily occur with a lower
value of spring stiffness for a high velocity (vp=
0.5) of the moving mass.

4. Experiments

4.1 Experimental setup

An experimental setup was built to verify the
dynamic responses of an elastically restrained sim-
ply-supported beam carrying a moving mass as
shown in Fig. 13.

In Fig. 13, number @ is the guide beam at-
tached to the test beam, and number (D is the ver-
tical column supporting the guide beam. The test
beam lies on the small bearings of the supporting
pole to simulate the simply-supported boundary
condition.

Properties of the test beam are presented in
Table 1. Three different sizes of a steel ball were
used as moving masses. Table 2 shows the spec-
ification of moving masses.

Photo. 1 shows the experimental setup.

4.2 Experiments
A series of experiments were conducted to veri-

(D Guide beam support column (@ Guide beam @ FFT
Analyzer @ Digital oscilloscope (& Base sheet ® Sim-
ply-supported pole (D) Laser displacement meter (®Laser
sensor (9 Test beam Elastic spring support

Fig. 13 Experimental set up

Table 1 Characteristic properties of the test beam

Beam material Aluminum 6061

Modules of elasticity (Gpa) 7.07e+10

Density (kg/m?®) 2,678.0
Mass (g) 283.0

Length (mm) 1,000.0
Width (mm) 32.0
Thickness (mm) 4.0
Groove width (mm) 10.0
Groove depth (mm) 2.0

Table 2 Specification of the moving mass

Type of Weight | Diameter | Materials
moving mass (g) (mm)
Type 1: M 66.7
Type 2: M> 150.8 Steel
Type 3: Ms 224.8

Photo. 1 Photograph of experimental set-up
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Dynamic deflection (mm)

-0.2 4.0 0.2 a4 0.6 0.8 1.0 1.2 1.4 168
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Fig. 14 Comparison theoretical results with experi-

mental ones for beam deflections (y=1(m/
s), M=67(g), £&:=0.2)

Dynamic deflection {mm)

--0.2 0.0 ’ 2.2 I 0.4 0.6 I 0.8 ’ 1.0 1.2 I 1.4 1.6
Time (sec)

Fig. 15 Comparison theoretical results with experi-

mental ones for beam deflections (v=2.2

(m/s), M=67(g), £&=0.2)

fy the numerical results obtained for dynamic re-
sponses of an elastically restrained simply-sup-
ported beam with non-symmetric cross section. A
spring of spring stiffness £=404(N/m) was cho-
sen for the experimental study. The dynamic de-
flection of the moving mass was measured by the
laser displacement sensor. The sensor is placed at
0.385(m) from the left end of the test beam. The
measured signals for dynamic deflections of the
test beam were amplified and displayed on the
oscilloscope.

Experiments were performed for various com-
binations of moving masses and velocities.

Figures 14~17 show the experimental and the
numerical results on dynamic responses of the
elastically restrained simply-supported beam in

Dynamic deflection (mm)

) 0.2 0.0 02 0.4 06 0.8 1.0 1.2 1.4 1.8
Time (sec)

Fig. 16 Comparison theoretical results with experi-

mental ones for beam deflections (v=1(m/

s), M=150.8(g), &=0.2

) - -~ Theoratical
Experimental

Dynamic deflection (mm)

1 | 1 1 1
02 0.0 0.2 0.4 0.8 0.8 1.0 1.2 14 1.6

Time (sec)
Fig. 17 Comparison theoretical results with experi-
mental ones for beam deflections (v=2.2

(m/s), M=224.8(g), £&=0.8)

the time domain.

A good agreement was obtained as shown in
these figures. It is thought that the slight differ-
ences between two results are caused by some
factors like the friction between the moving mass
and the test beam.

5. Conclusions

From the numerical analyses and the experi-
ments on the dynamic responses of an elastically
restrained beam, the following conclusions were
obtained :

(1) When the velocity of the moving mass is
relatively low, the maximum dynamic deflection
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of the beam occurs with a lower value of spring
stiffness, regardless of spring position. However,
the maximum dynamic deflection of the beam
does not necessarily occur with a lower value of
spring stiffness for a higher velocity of the moving
mass.

(2) Numerical results for dynamic responses of
the beam considered have a good agreement with
experimental ones.

(3) For £5<0.5 and a lower velocity of the
moving mass, the position of the maximum dy-
namic deflection shifts to the right side of the
beam as the spring stiffness K increases. How-
ever, for £,>0.5, the position of the maximum
dynamic deflection shifts to the left side of the
beam as the spring stiffness K increases.
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